Product Code Database
Example Keywords: hat -playstation $34-175
   » » Wiki: Electron Transport Chain
Tag Wiki 'Electron Transport Chain'.
Tag

An electron transport chain ( ETC

(2025). 9780443102813
) is a series of and other molecules which transfer from to electron acceptors via reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of (H+ ions) across a membrane. Many of the in the electron transport chain are embedded within the .

The flow of electrons through the electron transport chain is an exergonic process. The energy from the redox reactions creates an electrochemical proton gradient that drives the synthesis of adenosine triphosphate (ATP). In aerobic respiration, the flow of electrons terminates with molecular as the final electron acceptor. In anaerobic respiration, other electron acceptors are used, such as .

In an electron transport chain, the redox reactions are driven by the difference in the Gibbs free energy of reactants and products. The free energy released when a higher-energy electron donor and acceptor convert to lower-energy products, while electrons are transferred from a lower to a higher , is used by the complexes in the electron transport chain to create an electrochemical gradient of ions. It is this electrochemical gradient that drives the synthesis of ATP via coupling with oxidative phosphorylation with .

In , the electron transport chain, and site of oxidative phosphorylation, is found on the inner mitochondrial membrane. The energy released by reactions of oxygen and reduced compounds such as c and (indirectly) NADH and FADH is used by the electron transport chain to pump protons into the intermembrane space, generating the electrochemical gradient over the inner mitochondrial membrane. In eukaryotes, the electron transport chain is found on the membrane. Here, light energy drives electron transport through a and the resulting proton gradient causes subsequent synthesis of ATP. In , the electron transport chain can vary between species but it always constitutes a set of redox reactions that are coupled to the synthesis of ATP through the generation of an electrochemical gradient and oxidative phosphorylation through ATP synthase. – This source shows four ETCs ( Geobacter, Shewanella, Moorella , Acetobacterium) in figures 1 and 2.


Mitochondrial electron transport chains
Most cells have , which produce ATP from reactions of oxygen with products of the citric acid cycle, fatty acid metabolism, and amino acid metabolism. At the inner mitochondrial membrane, electrons from NADH and FADH pass through the electron transport chain to oxygen, which provides the energy driving the process as it is reduced to water. The electron transport chain comprises an series of electron donors and acceptors. Each will pass electrons to an acceptor of higher redox potential, which in turn donates these electrons to another acceptor, a process that continues down the series until electrons are passed to oxygen, the terminal electron acceptor in the chain. Each reaction releases energy because a higher-energy donor and acceptor convert to lower-energy products. Via the transferred electrons, this energy is used to generate a across the mitochondrial membrane by into the intermembrane space, producing a state of higher free energy that has the potential to do work. This entire process is called oxidative phosphorylation since ADP is phosphorylated to ATP by using the electrochemical gradient that the redox reactions of the electron transport chain have established driven by energy-releasing reactions of oxygen.


Mitochondrial redox carriers
Energy associated with the transfer of electrons down the electron transport chain is used to pump protons from the mitochondrial matrix into the intermembrane space, creating an electrochemical proton gradient (ΔpH) across the inner mitochondrial membrane. This proton gradient is largely but not exclusively responsible for the mitochondrial membrane potential (ΔΨ). It allows to use the flow of H+ through the enzyme back into the matrix to generate ATP from adenosine diphosphate (ADP) and inorganic phosphate. Complex I (NADH coenzyme Q reductase; labeled I) accepts electrons from the electron carrier nicotinamide adenine dinucleotide (NADH), and passes them to (; labeled Q), which also receives electrons from Complex II (succinate dehydrogenase; labeled II). Q passes electrons to Complex III (cytochrome bc1 complex; labeled III), which passes them to (cyt c). Cyt c passes electrons to Complex IV (cytochrome c oxidase; labeled IV).

Four membrane-bound complexes have been identified in mitochondria. Each is an extremely complex transmembrane structure that is embedded in the inner membrane. Three of them are . The structures are electrically connected by electron carriers and water-soluble electron carriers. The overall electron transport chain can be summarized as follows:

'''NADH, H''' → '''''Complex I''''' → '''Q''' → '''''Complex III''''' → '''cytochrome ''c'' '''→ '''''Complex IV''''' → '''HO'''
                       ↑
                   '''''Complex II'''''
                       ↑
                   '''Succinate'''
     


Complex I
In Complex I (NADH ubiquinone oxidoreductase, Type I NADH dehydrogenase, or mitochondrial complex I; ), two electrons are removed from NADH and transferred to a lipid-soluble carrier, ubiquinone (Q). The reduced product, ubiquinol (QH), freely diffuses within the membrane, and Complex I translocates four protons (H) across the membrane, thus producing a proton gradient. Complex I is one of the main sites at which premature to oxygen occurs, thus being one of the main sites of production of .Lauren, Biochemistry, Johnson/Cole, 2010, pp 598-611

The pathway of electrons is as follows:

is oxidized to NAD, by reducing flavin mononucleotide to FMNH in one two-electron step. FMNH is then oxidized in two one-electron steps, through a semiquinone intermediate. Each electron thus transfers from the FMNH to an Fe–S cluster, from the Fe-S cluster to ubiquinone (Q). Transfer of the first electron results in the free-radical (semiquinone) form of Q, and transfer of the second electron reduces the semiquinone form to the ubiquinol form, QH. During this process, four protons are translocated from the mitochondrial matrix to the intermembrane space.Garrett & Grisham, Biochemistry, Brooks/Cole, 2010, pp 598-611 As the electrons move through the complex an electron current is produced along the 180 width of the complex within the membrane. This current powers the of four protons to the intermembrane space per two electrons from NADH.

(2025). 9781305577206, Cengage.


Complex II
In Complex II (succinate dehydrogenase or succinate-CoQ reductase; ) additional electrons are delivered into the pool (Q) originating from succinate and transferred (via flavin adenine dinucleotide (FAD)) to Q. Complex II consists of four protein subunits: succinate dehydrogenase (SDHA); succinate dehydrogenase ubiquinone iron–sulfur subunit mitochondrial (SDHB); succinate dehydrogenase complex subunit C (SDHC); and succinate dehydrogenase complex subunit D (SDHD). Other electron donors (e.g., fatty acids and glycerol 3-phosphate) also direct electrons into Q (via FAD). Complex II is a parallel electron transport pathway to Complex I, but unlike Complex I, no protons are transported to the intermembrane space in this pathway. Therefore, the pathway through Complex II contributes less energy to the overall electron transport chain process.


Complex III
In (cytochrome bc1 complex or CoQH-cytochrome c reductase; ), the contributes to the proton gradient by an asymmetric absorption/release of protons. Two electrons are removed from QH at the QO site and sequentially transferred to two molecules of , a water-soluble electron carrier located within the intermembrane space. The two other electrons sequentially pass across the protein to the Qi site where the quinone part of ubiquinone is reduced to quinol. A proton gradient is formed by one quinol (2H+2e-) oxidations at the Qo site to form one quinone (2H+2e-) at the Qi site. (In total, four protons are translocated: two protons reduce quinone to quinol and two protons are released from two ubiquinol molecules.)
QH2 + 2 \text{ cytochrome }c(Fe^{III}) + 2 H^+_\text{in} -> Q + 2 \text{ cytochrome }c(Fe^{II}) + 4 H^+_\text{out}

When electron transfer is reduced (by a high membrane potential or respiratory inhibitors such as ), Complex III may leak electrons to , resulting in formation.

This complex is inhibited by (British Anti-Lewisite, BAL), and antimycin.


Complex IV
In (cytochrome c oxidase; ), sometimes called cytochrome AA3, four electrons are removed from four molecules of and transferred to molecular oxygen (O) and four protons, producing two molecules of water. The complex contains coordinated copper ions and several heme groups. At the same time, eight protons are removed from the mitochondrial matrix (although only four are translocated across the membrane), contributing to the proton gradient. The exact details of proton pumping in Complex IV are still under study. is an inhibitor of Complex IV.


Coupling with oxidative phosphorylation
According to the , proposed by Nobel Prize in Chemistry winner Peter D. Mitchell, the electron transport chain and oxidative phosphorylation are coupled by a proton gradient across the inner mitochondrial membrane. The efflux of protons from the mitochondrial matrix creates an electrochemical gradient (proton gradient). This gradient is used by the FF complex to make ATP via oxidative phosphorylation. ATP synthase is sometimes described as Complex V of the electron transport chain. The F component of acts as an that provides for a proton flux back into the mitochondrial matrix. It is composed of a, b and c subunits. Protons in the inter-membrane space of mitochondria first enter the ATP synthase complex through an a subunit channel. Then protons move to the c subunits.
(2025). 9781133106296, Cengage learning.
The number of c subunits determines how many protons are required to make the F turn one full revolution. For example, in humans, there are 8 c subunits, thus 8 protons are required. After c subunits, protons finally enter the matrix through an a subunit channel that opens into the mitochondrial matrix. This reflux releases free energy produced during the generation of the oxidized forms of the electron carriers (NAD and Q) with energy provided by O. The free energy is used to drive ATP synthesis, catalyzed by the F component of the complex.
Coupling with oxidative phosphorylation is a key step for ATP production. However, in specific cases, uncoupling the two processes may be biologically useful. The uncoupling protein, —present in the inner mitochondrial membrane of brown adipose tissue—provides for an alternative flow of protons back to the inner mitochondrial matrix. Thyroxine is also a natural uncoupler. This alternative flow results in rather than ATP production.


Reverse electron flow
Reverse electron flow is the transfer of electrons through the electron transport chain through the reverse redox reactions. Usually requiring a significant amount of energy to be used, this can reduce the oxidized forms of electron donors. For example, NAD+ can be reduced to NADH by Complex I.
(2025). 9780511790461, Cambridge University Press.
There are several factors that have been shown to induce reverse electron flow. However, more work needs to be done to confirm this. One example is blockage of ATP synthase, resulting in a build-up of protons and therefore a higher proton-motive force, inducing reverse electron flow.


Prokaryotic electron transport chains
In eukaryotes, NADH is the most important electron donor. The associated electron transport chain is NADH Complex I Q Complex III cytochrome c Complex IV O where Complexes I, III and IV are proton pumps, while Q and cytochrome c are mobile electron carriers. The electron acceptor for this process is molecular oxygen.

In ( and ) the situation is more complicated, because there are several different electron donors and several different electron acceptors. The generalized electron transport chain in bacteria is:

                     '''Donor'''            '''Donor'''                    '''Donor'''
                       ↓                ↓                        ↓
                 '''dehydrogenase'''   →   '''quinone'''   →  ''' ''bc'' '''  →   '''cytochrome'''
                                        ↓                        ↓
                                '''oxidase(reductase)'''       '''oxidase(reductase)'''
                                        ↓                        ↓
                                     '''Acceptor'''                 '''Acceptor'''
     

Electrons can enter the chain at three levels: at the level of a , at the level of the quinone pool, or at the level of a mobile electron carrier. These levels correspond to successively more positive redox potentials, or to successively decreased potential differences relative to the terminal electron acceptor. In other words, they correspond to successively smaller Gibbs free energy changes for the overall redox reaction.

Individual bacteria use multiple electron transport chains, often simultaneously. Bacteria can use a number of different electron donors, a number of different dehydrogenases, a number of different oxidases and reductases, and a number of different electron acceptors. For example, E. coli (when growing aerobically using glucose and oxygen as an energy source) uses two different NADH dehydrogenases and two different quinol oxidases, for a total of four different electron transport chains operating simultaneously.

A common feature of all electron transport chains is the presence of a proton pump to create an electrochemical gradient over a membrane. Bacterial electron transport chains may contain as many as three proton pumps, like mitochondria, or they may contain two or at least one.


Electron donors
In the current biosphere, the most common electron donors are organic molecules. Organisms that use organic molecules as an electron source are called . Chemoorganotrophs (animals, fungi, protists) and (plants and algae) constitute the vast majority of all familiar life forms.

Some prokaryotes can use inorganic matter as an electron source. Such an organism is called a ("rock-eater"). Inorganic electron donors include , , , , , , , and . Lithotrophs have been found growing in rock formations thousands of meters below the surface of Earth. Because of their volume of distribution, lithotrophs may actually outnumber and in our .

The use of inorganic electron donors such as is of particular interest in the study of . This type of metabolism must logically have preceded the use of organic molecules and oxygen as an energy source.


Dehydrogenases: equivalents to complexes I and II
Bacteria can use several different electron donors. When organic matter is the electron source, the donor may be NADH or succinate, in which case electrons enter the electron transport chain via NADH dehydrogenase (similar to Complex I in mitochondria) or succinate dehydrogenase (similar to Complex II). Other dehydrogenases may be used to process different energy sources: formate dehydrogenase, lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, H dehydrogenase (), electron transport chain. Some dehydrogenases are also proton pumps, while others funnel electrons into the quinone pool. Most dehydrogenases show induced expression in the bacterial cell in response to metabolic needs triggered by the environment in which the cells grow. In the case of lactate dehydrogenase in E. coli, the enzyme is used aerobically and in combination with other dehydrogenases. It is inducible and is expressed when the concentration of DL-lactate in the cell is high.


Quinone carriers
are mobile, lipid-soluble carriers that shuttle electrons (and protons) between large, relatively immobile macromolecular complexes embedded in the membrane. Bacteria use (Coenzyme Q, the same quinone that mitochondria use) and related quinones such as (Vitamin K). Archaea in the genus use caldariellaquinone. The use of different quinones is due to slight changes in redox potentials caused by changes in structure. The change in redox potentials of these quinones may be suited to changes in the electron acceptors or variations of redox potentials in bacterial complexes.


Proton pumps
A is any process that creates a across a membrane. Protons can be physically moved across a membrane, as seen in mitochondrial Complexes I and IV. The same effect can be produced by moving electrons in the opposite direction. The result is the disappearance of a proton from the cytoplasm and the appearance of a proton in the periplasm. Mitochondrial Complex III is this second type of proton pump, which is mediated by a quinone (the ).

Some dehydrogenases are proton pumps, while others are not. Most oxidases and reductases are proton pumps, but some are not. Cytochrome bc1 is a proton pump found in many, but not all, bacteria (not in E. coli). As the name implies, bacterial bc1 is similar to mitochondrial bc1 ( Complex III).


Cytochrome electron carriers
are proteins that contain iron. They are found in two very different environments.

Some cytochromes are water-soluble carriers that shuttle electrons to and from large, immobile macromolecular structures imbedded in the membrane. The mobile cytochrome electron carrier in mitochondria is cytochrome c. Bacteria use a number of different mobile cytochrome electron carriers.

Other cytochromes are found within macromolecules such as Complex III and Complex IV. They also function as electron carriers, but in a very different, intramolecular, solid-state environment.

Electrons may enter an electron transport chain at the level of a mobile cytochrome or quinone carrier. For example, electrons from inorganic electron donors (nitrite, ferrous iron, electron transport chain) enter the electron transport chain at the cytochrome level. When electrons enter at a redox level greater than NADH, the electron transport chain must operate in reverse to produce this necessary, higher-energy molecule.

It has been observed that inter-protein electron transport between cytochromes c and c1 ( complex III) depends on pH and the presence of oxygen, suggesting that and may act as in the long-distance electron transport process through the aqueous solution.


Electron acceptors and terminal oxidase/reductase
As there are a number of different electron donors (organic matter in organotrophs, inorganic matter in lithotrophs), there are a number of different electron acceptors, both organic and inorganic. As with other steps of the ETC, an enzyme is required to help with the process.

If oxygen is available, it is most often used as the terminal electron acceptor in aerobic bacteria and facultative anaerobes. An reduces the O to water while oxidizing something else. In mitochondria, the terminal membrane complex ( Complex IV) is cytochrome oxidase, which oxidizes the cytochrome. Aerobic bacteria use a number of different terminal oxidases. For example, E. coli (a facultative anaerobe) does not have a cytochrome oxidase or a bc1 complex. Under aerobic conditions, it uses two different terminal quinol oxidases (both proton pumps) to reduce oxygen to water.

Bacterial terminal oxidases can be split into classes according to the molecules act as terminal electron acceptors. Class I oxidases are cytochrome oxidases and use oxygen as the terminal electron acceptor. Class II oxidases are quinol oxidases and can use a variety of terminal electron acceptors. Both of these classes can be subdivided into categories based on what redox-active components they contain. E.g. Heme aa3 Class 1 terminal oxidases are much more efficient than Class 2 terminal oxidases.

Mostly in anaerobic environments different electron acceptors are used, including nitrate, nitrite, ferric iron, sulfate, carbon dioxide, and small organic molecules such as fumarate. When bacteria grow in anaerobic environments, the terminal electron acceptor is reduced by an enzyme called a reductase. E. coli can use fumarate reductase, nitrate reductase, nitrite reductase, DMSO reductase, or trimethylamine-N-oxide reductase, depending on the availability of these acceptors in the environment.

Most terminal oxidases and reductases are inducible. They are synthesized by the organism as needed, in response to specific environmental conditions.


Photosynthetic
In oxidative phosphorylation, electrons are transferred from an electron donor such as NADH to an acceptor such as O through an electron transport chain, releasing energy. In photophosphorylation, the energy of is used to create a high-energy electron donor which can subsequently reduce oxidized components and couple to ATP synthesis via proton translocation by the electron transport chain.

Photosynthetic electron transport chains, like the mitochondrial chain, can be considered as a special case of the bacterial systems. They use mobile, lipid-soluble quinone carriers ( and ) and mobile, water-soluble carriers (). They also contain a . The proton pump in all photosynthetic chains resembles mitochondrial Complex III. The commonly held theory of proposes that both organelles descended from bacteria.


See also


Further reading


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time